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Abstract. Content Security Policy (CSP) has been proposed as a prin-
cipled and robust browser security mechanism against content injection
attacks such as XSS. When configured correctly, CSP renders malicious
code injection and data exfiltration exceedingly difficult for attackers.
However, despite the promise of these security benefits and being imple-
mented in almost all major browsers, CSP adoption is minuscule—our
measurements show that CSP is deployed in enforcement mode on only
1% of the Alexa Top 100.
In this paper, we present the results of a long-term study to determine
challenges in CSP deployments that can prevent wide adoption. We per-
formed weekly crawls of the Alexa Top 1M to measure adoption of web
security headers, and find that CSP both significantly lags other secu-
rity headers, and that the policies in use are often ineffective at actually
preventing content injection. In addition, we evaluate the feasibility of
deploying CSP from the perspective of a security-conscious website op-
erator. We used an incremental deployment approach through CSP’s
report-only mode on four websites, collecting over 10M reports. Further-
more, we used semi-automated policy generation through web applica-
tion crawling on a set of popular websites. We found both that automated
methods do not suffice and that significant barriers exist to producing
accurate results.
Finally, based on our observations, we suggest several improvements to
CSP that could help to ease its adoption by the web community.
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1 Introduction

The web as a platform for application development and distribution has evolved
faster than it could be secured. Consequently, it has been plagued by numerous
classes of security issues, but perhaps none are as serious as content injection
attacks. Content injection, of which cross-site scripting (XSS) is the most well-
known form, allows attackers to execute malicious code that appears to belong
to trusted origins, to subvert the intended structure of documents, to exfiltrate
sensitive user information, and to perform unauthorized actions on behalf of
victims. In response, many client- and server-side defenses against content injec-
tion have been proposed, ranging from language-based auto-sanitization [17] to
sandboxing of untrusted content [12] to whitelists of trusted content [11].
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Content Security Policy (CSP) is an especially promising browser-based secu-
rity framework for refining the same-origin policy (SOP), the basis of traditional
web security. CSP allows developers or administrators to explicitly define, us-
ing a declarative policy language, the origins from which different classes of
content can be included into a document. Policies are sent by the server in a
special security header, and a browser supporting the standard is then responsi-
ble for enforcing the policy on the client. CSP provides a principled and robust
mechanism for preventing the inclusion of malicious content in security-sensitive
web applications. However, despite its promise and implementation in almost all
major browsers, CSP is not widely used in practice—in fact, according to our
measurements, it is deployed in enforcement mode by only 1% of the Alexa Top
100.

In this paper, we present the results of a long-term study to determine why
this is the case. In particular, we repeatedly crawled the Alexa Top 1M to mea-
sure adoption of web security headers, and find that CSP significantly lags be-
hind other, more narrowly-focused headers in adoption. We also find that for the
small fraction of sites that have adopted CSP, it is often deployed in a manner
that does not leverage the full defensive power of CSP.

In addition to our Internet-scale study, we also quantify the feasibility of
incrementally deploying CSP from the perspective of a security-conscious ad-
ministrator using its report-only mode at four websites. Although this is an oft-
recommended practice, we find significant barriers to this approach in practice
due to interactions with browser extensions and the evolution of web application
structure over time.

Finally, we evaluate the feasibility of automatically generating CSP rules
for web applications, again from the perspective of an administrator. We find
that for websites that are well-structured and do not change significantly over
time, rules can indeed by generated in a black-box fashion. However, for more
complex sites such as those that make use of third-party advertising libraries in
their proper site context, policy generation is significantly more difficult.

To summarize, the contributions of this paper are the following:

– We perform the first long-term analysis of CSP adoption in the wild, per-
forming repeated crawls of the Alexa Top 1M over a 16 month period.

– We investigate challenges in adopting CSP, and why it is not deployed to its
full extent even when it has been adopted.

– We evaluate the feasibility of both report-only incremental deployment and
crawler-based rule generation, and show that each approach has fundamental
problems.

– We suggest several avenues for enhancing CSP to ease its adoption.
– We release an open source CSP parsing and manipulation library. 1

1 https://github.com/tlauinger/csp-utils
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Table 1: The types of directives supported in the current W3C standard CSP 1.0.

Directive Content Sources

default-src All types, if not otherwise explicitly specified
script-src JavaScript, XSLT
object-src Plugins, such as Flash players
style-src Styles, such as CSS
img-src Images
media-src Video and audio (HTML5)
frame-src Pages displayed inside frames
font-src Font files
connect-src Targets of XMLHttpRequest, WebSockets

2 Content Security Policy

The goal of CSP is to mitigate content injection attacks against web applications
directly within the browser [6, 19]. In the following, we describe CSP as it is
currently implemented, and briefly discuss both future extensions and the classes
of attacks it is intended to prevent.

2.1 Overview of CSP

Content Security Policy is fundamentally a specification for defining policies
to control where content can be loaded from, granting significant power to de-
velopers to refine the default SOP. Developers or administrators can configure
web servers to include Content-Security-Policy headers as part of the HTTP
responses issued to browsers. CSP-enabled browsers are then responsible for en-
forcing the policies associated with each resource.

A content security policy consists of a set of directives. Each directive corre-
sponds to a specific type of resource, and specifies the set of origins from which
resources of that type may be loaded. Table 1 explains the directive types sup-
ported in the current W3C standard CSP 1.0.2 The scheme and port in source
expressions are optional.

CSP also supports wildcards (*) for subdomains and the port, and has ad-
ditional special keywords: ‘self’ represents the origin of the resource, while
‘none’ represents an empty resource list and prevents any resource of the re-
spective type from being loaded. The script-src and style-src directives
additionally support the ‘unsafe-inline’ keyword, which allows inline script
or CSS to be included in the HTML document rather than being loaded from an
external resource. Finally, ‘unsafe-eval’ allows JavaScript to use string evalu-
ation methods such as eval() and setTimeout(). If not explicitly whitelisted,

2 The directive script-src http://seclab.nu:80, for instance, allows a protected
website to load scripts from the host seclab.nu via HTTP on port 80, but blocks
all scripts from other sources.
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CSP disables these special source types because their use is considered to be par-
ticularly unsafe. However, changing websites to remove all inline scripts can be a
burden on developers, and increase page load latency by introducing additional
external resources.

CSP can operate in one of two modes: enforcement or report-only. In en-
forcement mode, compatible browsers block resources that violate a policy. In
report-only mode, however, browsers do not enforce policies, but rather report
violations that would be blocked on the developer console. Additionally, a special
CSP directive (report-uri) can be used to instruct browsers to send violation
reports to the given URI. This feature can be used to learn policies before en-
abling enforcement, or to monitor for unforeseen changes or attacks against a
website. In this paper, we make extensive use of the report-only mode and vio-
lation reports to explore various ways to (semi-)automatically generate policies
for websites.

CSP has been widely adopted by the browser manufacturers. It is supported
by the current versions of almost all major browsers, including some mobile
browsers. It is, however, only partially supported by Internet Explorer.

2.2 Deploying CSP

To prevent XSS attacks, disallowing inline scripts and eval is the core require-
ment to benefit from CSP. Inline scripts should be disabled to prevent the
browser from inadvertently executing scripts that have been injected into the
site. Eval-constructs, often abused to parse JSON strings, can be used directly
by an attacker to execute arbitrary code if she controls the data source. While
the unsafe-inline and unsafe-eval options allow this behavior to be enabled,
their presence marginalizes the benefit of CSP.

Therefore, for version 1.0 of CSP, inline scripts should be moved to files
and eval replaced with a safe equivalent for the corresponding task, such as
JSON.parse() to parse JSON. Furthermore, JavaScript should be hosted on
a domain that only serves static files instead of user content. This separation
makes it harder for attackers to execute code in the browser. Also, external
scripts should be moved to a server controlled by the website owner, reducing
trust in third-party servers. The number of whitelisted sources should be kept
to a minimum to increase the difficulty of data exfiltration for attackers.

In the current draft version 1.1, additional features have been introduced to
safely support inline scripts as well as functionally replace the X-Frame-Options
header. As these features are subject to change, we do not address them in this
work.

2.3 Attacks Outside the Scope of CSP

CSP can prevent general content injection attacks, and in draft version 1.1 sub-
sumes previous mechanisms such as the X-XSS-Protection header, which serves
the narrow purpose of enabling browser XSS filters. However, it is not intended
to address other web attacks such as cross-site request forgery (CSRF). More
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fundamentally, CSP describes which content can be loaded by source, but the
order of inclusion is out of scope. Hence, even with strict rules and perfect en-
forcement, out-of-order inclusion can lead to undesired side effects in JavaScript
applications [8]. JSONP (JSON with padding) is a mechanism to bypass SOP
restrictions by including a script tag from a remote server and specifying a func-
tion to be executed once a result becomes available. Hence, whitelisted JSONP
sources can be used for calls to arbitrary functions—or, if input for the callback
function is not filtered, arbitrary code execution.

3 HTTP Security Headers

In this section, we describe our data collection of HTTP response headers. We
collected this data in an effort to understand the landscape of security headers
in the wild, particularly in regards to CSP.

3.1 Methodology

To acquire a long-term overview of CSP adoption, we performed weekly crawls of
the web starting in December 2012. We crawled the front page of each site in the
Alexa Top 1M most frequently visited websites. For every site x, we connected
to http://x, https://x, http://www.x and https://www.x. We counted a site
as using a particular header if any of the four responses served that header.
However, our crawler only visited the front page of each Alexa entry. Therefore,
sites that employ CSP only on subdomains or areas other than the front page
were not detected in the crawl.3 Furthermore, if the CSP rules are generated
based on user agent discrimination, the collected data does not hold for all types
of browsers visiting the site. We used a Firefox user agent string, updating version
information over time.

Description of HTTP Security Headers

To discuss CSP in context, we provide a brief overview of the other security
relevant HTTP response headers. Details about them can be found at IETF,
W3C, or in the browser specifications.

Platform for Privacy Preferences (P3P) [2]. Websites can use this
header to describe their privacy policy. However, it is not supported by major
browsers and has not been actively developed for several years. The header is
still in use as Internet Explorer blocks third-party cookies by default if no policy
is present. P3P is legally binding and has been used in litigation in the past.

DNS Prefetch Control [1]. DNS prefetching is a technique for browsers
to reduce latency by resolving referenced hostnames before a user follows a link.
This header allows websites to override the default behavior of the browser.

3 One example is Twitter, which uses CSP for parts of their site, but not the front
page.

http://x
https://x
http://www.x
https://www.x
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XSS Protection [3]. This header can be used to enable or disable client-side
heuristic XSS filtering. The reflected-xss directive of CSP 1.1 is functionally
equivalent.

Content Type Options [4]. As the Content-Type header is often not set
correctly, MIME type sniffing can be used to detect the actual response content
type. The nosniff directive is the only option available for this header and
disables MIME type sniffing, preventing possible type confusion.

Frame Options [9]. This header allows a website to restrict iframing to
prevent UI redressing attacks. CSP draft 1.1 includes these features under the
frame-ancestors directive, and may replace this header.

HTTP Strict Transport Security (HSTS) [5]. By using HSTS, websites
can specify that in the future, the browser should only connect to them via a
secure connection, thereby preventing SSL stripping.

Cross-Origin Resource Sharing (CORS) [7]. SOP has proven to be an
obstacle for modern web applications, and has been worked around by various
methods such as JSONP. CORS allows websites to operate outside the limita-
tions of SOP by extending it, while not completely side-stepping it.

3.2 Adoption of HTTP Security Headers

To measure the popularity of CSP in contrast to other security headers, we
looked at the HTTP response headers in our weekly crawls, as well as a static
snapshot from the end of March 2014. For the static snapshot, we used the entire
Alexa Top 1M, breaking down websites by popularity. We used a snapshot of
the Top 10K to track the evolution of response headers back to December 2012.

To compare the adoption of security-related headers between different levels
of site popularity, we split Table 2 into brackets. From the data, it is apparent
that websites that are less popular use CSP less frequently. For instance, among
the 100 most popular sites, only two used CSP (2%), while CSP was enabled for
only 775 among the 900,000 least popular sites (0.00086%).

Hence, websites that are less popular use CSP less frequently. In contrast,
for CORS, header usage was more evenly spread out, with all brackets between
0.7% and 2.6%.

During our crawls, we noticed that Google enabled CSP headers only oc-
casionally. We performed an additional test of google.com with 1,000 requests,
finding that 0.8% of the responses included CSP headers. While Google had 18
sites in the top 100, none of them issued CSP headers in the crawl of Table 2.

In Figure 1, we track the evolution of security-related headers of the Alexa
Top 10K from March 2014 backwards in time to December 2012. P3P was par-
ticularly popular; however, the P3P policies served were often invalid, providing
only an explanation for why the website did not support it. We observe that
CSP is only slowly gaining traction over time. The main contributing factor for
the fluctuation of CSP headers in the data is due to Google.

For the hosts in the Top 10K of this crawl, we identified all servers that had
sent CSP rules at any point in time during our study. We found 140 sites that
did so; 110 of those belonged to Google (79%).

google.com
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Table 2: Number of websites with security-related HTTP response headers,
grouped by intervals of site popularity, for the Alexa Top 1M ranking.

Header / Alexa Rank [1− 102] (102 − 103] (103 − 104] (104 − 105] (105 − 106]

P3P 47 176 849 6,315 79,600
DNS Prefetch Control 1 0 3 40 461
XSS Protection 26 77 269 2,336 43,045
Content Type Options 10 27 172 1,995 42,150
Frame Options 43 165 581 2,747 21,746
HSTS 5 16 83 476 2,475
CORS 1 26 217 1,228 7,149
CSP 2 2 15 57 775

Any security header 66 304 1,623 11,491 132,347
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Fig. 1: Popularity of security headers in the Alexa Top 10K.

3.3 Detailed Analysis of CSP Headers

In this part, we describe in detail how websites use CSP, whether they use CSP’s
reporting feature to learn policies, whether they actively enforce policies, and
how effective those policies are in mitigating attacks.

Enforcement vs. Report-Only. During our crawl at the end of March, we
found 815 sites in enforcement mode, 35 sites in report-only mode, and no sites
that sent both types of headers. Out of the websites in enforcement mode, only
23 collected violation reports.

In the Top 10K, we observed only one site in report-only mode that later
switched to enforcement. The Norwegian financial services site dnb.no started
collecting reports in June 2013, and enabled enforcement in February 2014. Their
enforced default-src directive consists of 74 sources, including the schemes
chrome-extension, chromeinvoke, and chromeinvokeimmediate. Furthermore,
unsafe-inline and unsafe-eval are both enabled. Therefore, this policy ap-
pears to provide little benefit over not using CSP at all.

dnb.no
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We noticed that several websites use CSP to test for mixed content. Mixed
content is the inclusion of unencrypted content into HTTPS sessions, which re-
duces the benefit of encryption. Google’s sampling uses the following report-only
policy: default-src https: data:; options eval-script inline-script;

report-uri /gen 204?atyp=csp. Etsy also samples for mixed content; we found
CSP headers in nine out of 2,000 (0.45%) responses. Similarly, hootsuite.com
tested for mixed content from April 2013 to March 2014 for all responses, but
we observed no CSP headers after that.

Types of Sites Using CSP. To further understand the types of websites that
use CSP, we looked for similarities in website titles. The largest portion of sites
supporting CSP, 417, is due to phpMyAdmin, a PHP-based web application used
to manage MySQL databases. phpMyAdmin ships with CSP enabled by default,
which allows inline scripts, eval, and restricts sources to ‘self’. While this
policy does not prevent XSS, data exfiltration is more difficult. These rules can
be deployed as the software is fairly static. However, when conducting a search
for phpMyAdmin and CSP, we found users having trouble including images when
modifying their installations. The general solution offered was to disable CSP in
the configuration rather than updating the default policy.

Ironically, on the vendors’ demo site http://demo.phpmyadmin.net/master/,
the operators tried to include Google analytics. While the Google analytics do-
main is whitelisted using default-src, it is not in the script-src source list.
As specific directives override the default-src directive, the script is uninten-
tionally blocked.

We also found 170 OwnCloud instances, which uses CSP by default from
version 5.

Prevalence of Unsafe Policies. We identified several patterns in CSP policies
that violate deployment best practices as described in Section 2.2. In Table 3,
we summarize the observed rules in enforcement over the Alexa Top 1M from
March 24th. We split at the 10K rank to discriminate between more popular
websites and lower ranking ones. ‘*’ represents either the literal asterisk, or the
entire HTTP(S) scheme is whitelisted in one or more of the source lists.

On the majority of sites, eval and inline is enabled: eight out of 13 and 11 out
of 13 in the Top 10K bracket, 700 out of 802 and 728 out of 802 in the remaining
990,000 sites. This configuration strongly reduces the benefits of CSP for XSS
mitigation. Configuring asterisk or a whole scheme as a source in a directive
enables data leakage to any host. Six out of 13 and 230 out of 802 websites
respectively served such directives. 10 out of 13 sites in the Top 10K bracket had
no report-uri to collect violation reports. This is surprising as CSP could be
used as a warning system.

While CSP in theory can effectively mitigate XSS and data exfiltration, in
practice CSP is not deployed in a way that provides these benefits.

hootsuite.com
http://demo.phpmyadmin.net/master/
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Table 3: Overview of enforced policies.

Feature / Alexa Rank [1− 104] (104 − 106]

unsafe-eval 8 700
unsafe-inline 11 728
script-src ‘self ’ 12 789
no report-uri 10 782
#script-src > 10 2 33
* as source 6 230
Median #directives 6 4
Median #script sources 4 1
# CSP Policies 13 802

3.4 Conclusions

While some sites use CSP as an additional layer of protection against content
injection, CSP is not yet widely adopted. Furthermore, the rules observed in the
wild do not leverage the full benefits of CSP. The majority of CSP-enabled web-
sites were installations of phpMyAdmin, which ships with a weak default policy.
Other recent security headers have gained far more traction than CSP, presum-
ably due to their relative ease of deployment. That only one site in the Alexa
Top 10K switched from report-only mode to enforcement during our measure-
ment suggests that CSP rules cannot be easily derived from collected reports. It
could potentially help adoption if policies could be generated in an automated,
or semi-automated, fashion.

4 CSP Violation Reports

Web browsers compatible with CSP can be configured to report back to the
website whenever an activity, whether carried out or blocked, violates the site’s
policy. This is meant as a debugging mechanism for web operators, both to
develop policies from scratch, and to be informed when an existing policy needs
to be updated. Starting with a “deny all” policy in report-only mode, operators
can collect information about all resources that need to be whitelisted in order
for the site to function, compile a corresponding policy, and eventually switch to
enforcement mode. We applied this approach to four websites and analyzed the
reports that we received, gaining unexpected insights into the web ecosystem.

4.1 Background

CSP includes an optional report-uri directive that allows website operators to
specify a sink for violation reports. It is supported in both report-only and
enforcement mode of CSP. As an illustration, consider the following policy:
img-src ‘none’; report-uri /sink.cgi. When a user visits the URL http:

//seclab.nu/test.html and that page includes the image resource http://se

http://seclab.nu/test.html
http://seclab.nu/test.html
http://seclab.nu/pic.gif
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clab.nu/pic.gif, the browser would send a report similar to the following one:
{"blocked-uri": "http://seclab.nu/pic.gif", "violated-directive":

"img-src ‘none’", "document-uri": "http://seclab.nu/test.html", ...}.
From this report, the developer can infer that the policy entry img-src http:

//seclab.nu should be added to the policy.

4.2 Methodology

We deployed CSP on four of our own websites: two personal pages, an institu-
tional page, and a popular analysis service. The policies we used specified empty
resource lists for all supported directive types—that is, any browser activity cov-
ered by CSP was explicitly forbidden and should generate a report. We deployed
the policies in report-only mode to not interfere with the normal operation of
the site. Besides the additional CSP headers, the sites were not modified in any
way.

During our analysis, we observed that the formats of reports sent by differ-
ent browser versions varied slightly. Older Firefox versions, for instance, explic-
itly stated when a violation was due to the special cases ‘unsafe-inline’ or
‘unsafe-eval’ for script and style directives, as opposed to violations based on
a resource URI. All recent versions of browsers, however, reported only an empty
blocked-uri instead. Unfortunately, this format did not allow us to distinguish
between ‘unsafe-inline’ and ‘unsafe-eval’ script violations.

In order to work around this issue, we leveraged the fact that recent browser
versions supported multiple CSP headers in parallel. That is, in addition to the
regular policy discussed above that captured any CSP event, we added two more
policies that caused reports only for eval and inline violations, respectively:

default-src *; script-src * ’unsafe-inline’;

style-src * ’unsafe-inline’; report-uri /sink.cgi?type=eval

default-src *; script-src * ’unsafe-eval’;

style-src *; report-uri /sink.cgi?type=inline

We deployed all three policies and distinguished the reports we received using
the type parameter in the report URI. We removed duplicate eval and inline
violations that were reported for the regular policy (30% on site D). Furthermore
we removed some violations reported for the eval and inline policies that were in
fact no eval or inline violations (1.8% on site D). Those were triggered by a bug in
older Firefox versions that did not properly execute multiple policies in parallel.
Since newer Firefox versions were not affected, the user agent distributions of
the original and the filtered data set were very similar. Table 4 shows the number
of reports retained in the filtered data set, which is the basis for the following
discussion.

From each report, we derive a policy entry that whitelists the respective vi-
olation. We extract the type, such as img-src, from the violated-directive.
For regular violations, we append the scheme, host name and port from the
blocked-uri, such as http://seclab.nu. For inline or eval violations, we ap-
pend ‘unsafe-inline’ or ‘unsafe-eval’. We generate a single policy per site
by combining all entries and set default-src ‘none’ to block everything else.

http://seclab.nu/pic.gif
http://seclab.nu/pic.gif
http://seclab.nu/pic.gif
http://seclab.nu/test.html
http://seclab.nu
http://seclab.nu
http://seclab.nu
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Table 4: Overview of the CSP violation report data sets received from our web-
sites in early 2014, after removing inconsistent reports.

Site A B C D

Type personal personal institutional service

# Reports 1.1K 21.8K 48.0K 7.1M
Median Reports/Day 9 671 2.1K 348.5K

# IP Addresses 78 1.6K 1.2K 14.4K
Median Reports/Addr. 7 7 28 85

% Reports/Browser
Chrome (mobile, derivatives) 46.6 (+5.4) 59.3 (+8.3) 54.3 (+3.7) 61.0 (+2.3)
Firefox (mobile, derivatives) 23.8 (+0.5) 22.2 (+0.6) 30.1 (+0.5) 30.3 (+0.2)
Safari (mobile) 5.7 (+2.3) 2.3 (+3.5) 4.1 (+3.7) 1.5 (+0.5)
Opera 0.5 0.3 0.6 1.9
Googlebot 15.1 3.1 2.0 2.1

Our approach is to generate one single policy that is general enough to cover
the entire protected site. Such a site-wide policy is easier to generate than in-
dividual policies, since any similarity between pages on the same site reduces
the number of violation reports necessary to generate a policy. Furthermore,
site-wide policies are easier to configure; a site-wide reverse proxy could insert a
static policy into HTTP responses without the need to change application code.

4.3 Results

Table 5 summarizes the policies we generated for each of our sites. We verified
manually each entry in the policies and found that many of the whitelisted re-
sources were not actually intended to be included in the websites. The policy gen-
erated for site A, for instance, is default-src ‘none’; frame-src https://sr

v.mzcdn.com; img-src ‘self’ data: http://1.2.3.11; object-src http

://www.ajaxcdn.org; script-src ‘unsafe-eval’ ‘unsafe-inline’ http:

//ajax.googleapis.com http://f.ssfiles.com http://i.bestoffersjs.i

nfo http://srv.mzcdn.com http://www.superfish.com https://www.super

fish.com; style-src ‘unsafe-inline’. Yet, site A was entirely static and
did not contain any script at all. The correct policy for site A would have been
default-src ‘none’; img-src ‘self’ data:; style-src ‘unsafe-inline’.
In other words, only 21% of the policy entries generated from the received re-
ports were legitimate.

On site D, only 2% of the policy entries were legitimate. Furthermore, many
of the legitimate entries simply enumerated all the alternative domain names
of the same site (e.g., with or without the www subdomain), or they were due
to the same resource being loaded over HTTP or HTTPS. When disregarding
these details to allow for a fairer comparison, as noted in brackets in the table,
the percentage of legitimate policy entries drops to only 0.8% on site D.
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Table 5: Length of policies when whitelisting all violations from the report data
set (a), and with an additional filter for URL schemes of browser extensions
(b). Most of the policy entries correspond to injected resources; only few are
intended to be included. (In brackets, the number of unique policy entries when
disregarding the protocol HTTP(S) or alternative domains, such as the www
subdomain.)

Site A B C D

# Entries (a) 14 221 226 1,113
# Entries, extension filter (b) 14 212 215 1,090
Correct Subset 3 (3) 14 (9) 38 (13) 22 (9)

Table 6: Most frequent Chrome extensions observed at site D.

Name # Reports

AdBlock 38K
AdBlock Plus 29K
Grooveshark Downloader 9.5K
ScriptSafe 8.8K
DoNotTrackMe 8.2K

Reasons for invalid policy entries. We identified a number of reasons why
web browsers sent CSP violation reports for resources that did not exist in the
original websites. Many of these reports appeared to be caused by browser exten-
sions that modified the DOM of the page by injecting additional resources such
as scripts or images. We observed extensions for blocking advertisements, exten-
sions injecting advertisements, price comparison toolbars, an anti-virus scanner,
a notetaking plugin, and even a BitTorrent browser extension. We could auto-
matically identify some browser extensions based on violation reports because
they attempted to load resource URIs that contained the chrome-extension or
safari-extension schemes followed by the unique identifier of the extension.
AdBlock and AdBlock Plus were the most frequent extensions for the Chrome
browser (Table 6), while the most frequent Safari extension was Evernote. Yet,
automatically removing these reports (and a few other unexpected schemes, such
as about and view-source) accounted for fewer than 5% of all incorrect policy
entries, as shown in the second row of Table 5. The remaining browser extensions
exhibited no such uniquely distinguishing features, often injecting libraries that
are used not only in browser extensions but also in many websites, such as Ajax
tools, Google Analytics, and resources from large content distribution networks.

When browsers send violation reports for modifications due to browser exten-
sions, the reverse conclusion is that websites enforcing CSP can cause browser
extensions to stop functioning. Some browser extensions thus intercept CSP
headers and modify them in order to whitelist their own resources or disable
CSP. We observed reports caused by one such extension, which were sent be-
cause the modification resulted in a semantic error. We cannot quantify how
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Fig. 2: Fraction of new policy entries
discovered over time on site B (mea-
surement inactive during the dashed
intervals). It can take some time until
all legitimate resources have been ac-
cessed at least once; in the meantime,
many injected resources are reported.
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Fig. 3: Frequency of legitimate and in-
valid violations being reported on site
D. Some injected resources occurred
orders of magnitude more often than
legitimate resources.

often such modifications were successful as they are not observable with our
methodology.

In addition to browser extensions, “in-flight” modification of pages by ISPs or
web applications such as anonymity proxies can also cause violation reports. The
image loaded from 1.2.3.11 in the example above appeared to be injected by a
mobile Internet provider. These examples illustrate that even when CSP viola-
tions due to browser extensions were filtered (or not reported by the browsers),
other non-attack scenarios can still cause websites to receive spurious reports.
Administrators who plan to generate a policy from reports submitted by their
visitors’ web browsers may need to manually verify a large number of policy
entries in order to avoid accidentally whitelisting resources injected by browser
extensions or ISPs (let alone attackers).

Time delay until a policy can be generated. On site B, it took around two
weeks to receive at least one report for each valid policy entry. The last resource
that was discovered was an embedded YouTube video. Another resource that was
discovered relatively late was an image loaded over HTTPS instead of HTTP;
all other valid policy entries could be generated within the first two days of
the measurement. For the other sites, the durations were similar. In practice
we expect these numbers to vary, thus website operators will need some prior
knowledge about the resources used on their website so that they can decide
when it is safe to switch from report-only to enforcement mode without causing
any disruption. Operators could therefore be tempted to run the observation
period for as long as possible in order to minimize the risk of not receiving
reports for legitimate resources. However, as Figure 2 shows, the rate of newly
observed, invalid policy entries remained relatively constant over time, suggesting
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that longer measurement periods can significantly increase the number of policy
entries an operator needs to verify manually.

Report frequency as a (poor) distinguishing feature. Only about 4%
of all reports received on site D during our measurement resulted in an invalid
policy entry. Hence, one might attempt to use the frequency of a report as an
indicator for its validity. However, this approach would be problematic for two
reasons. First, an attacker can easily influence the frequency distribution ob-
served by the website by submitting forged reports. Second, even in the absence
of attacks, resources injected into websites can be so popular that they cause
reports more often than some legitimate, but infrequently accessed, resources.

Figure 3 visualizes this phenomenon. The most frequently injected resource
(a script loaded from superfish.com for price comparison) was reported more
than 22,000 times. In contrast, connect-src ‘self’, which is used by a progress
meter on the site, was reported only 9,000 times, and reports corresponding to
alternative domain names of site D were received even less frequently.

4.4 Conclusions

Websites small and large observe CSP violation reports for injected resources.
Even in the absence of ostensibly malicious activity, which we did not observe, the
high number of injected resources complicates the process of generating a viable
policy from the received reports. At the moment, this task is mostly a tedious
and, from our own experience, error-prone manual process. As a semi-automated
approach to filtering reports, it might be possible to generate signatures for the
most common browser extensions, either manually or by leveraging the fact
that an installed browser extension usually causes several violations to co-occur
(based on time, IP address, and user agent signature). These signatures could be
shared with the community and could be used to reduce the number of reports
that need to be verified manually.

5 Semi-Automated Policy Generation

An alternative approach to generating a policy from appropriately filtered and
verified reports submitted by visitors is to make use of trustworthy reports only.
In order to explore this approach further, we developed a proof-of-concept web
crawler that generates violation reports in a controlled environment.

5.1 Methodology

Our crawler is implemented as an extension for the Chromium browser based
on Site Spider, Mark II. The crawler follows at most 500 internal links on the
main domain of the crawled site in a non-randomized breadth-first search. Af-
ter navigating to a page, the crawler pauses for 2.5 s to load all resources of a
document such as images, scripts, and external pages displayed in frames. The

superfish.com
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browser accesses the web through an instance of the Squid web proxy with an
ICAP module. The proxy inserts the CSP report-only headers described in Sec-
tion 4.2 and collects the resulting reports. The proxy also intercepts encrypted
SSL traffic.

After crawling a site, we discarded all reports that did not match the site’s
main domain. These reports referred to external documents loaded in a frame
and were not necessary to generate a policy for the main document. (In CSP, a
document’s policy does not transitively apply to nested documents loaded inside
a frame.) From the remaining reports, we generated a policy as in Section 4.2.

The crawler should be considered a proof-of-concept to explore the feasibil-
ity of automatically generating policies for websites. By following only hyper-
text links, the crawler cannot detect violations that conditionally occur after
load-time, such as clicking the “play” button in a Flash movie, or triggering
JavaScript-related events. We leave ways to increase the crawler’s coverage to
future work.

As a potentially more targeted alternative to automated crawling, we also
manually browsed websites in a fresh browser instance and used the proxy to
collect reports. This process included no feedback. The goal was to cover all areas
of the site and trigger as many different violations as possible by specifically
exercising functionality implemented in JavaScript or browser plugins.

5.2 Evaluation

The question of whether semi-automated policy generation for websites is a
suitable approach—without requiring modifications to the sites—depends on
two opposing goals. First, the generated policy must not break the site. A policy
generation mechanism must discover all resources being included by a site, or a
superset thereof. Second, the generated policy should be as narrow as possible
in order to provide the maximum safety gain. Unnecessary resources should not
be allowed by the policy, and unsafe mechanisms should not be used. In the
first part of this evaluation, we compare methods of collecting reports for policy
generation on sites where we know that a sound policy exists. In the second part,
we explore how well different site architectures work with CSP; that is, whether
a sensible policy can be deployed without changing the sites.

Crawling and manual browsing of our own sites. From the reports submit-
ted by visitors’ web browsers in Section 4.3, we know that stable policies exist for
our own four sites. Indeed, the sets of policy entries generated by crawling and
manual browsing as shown in the upper part of Table 7 overlap, and only a few
entries were found by only one method. Especially when disregarding differences
due to alternative domain names and HTTP(S), both methods performed simi-
larly. However, neither method was perfect. The crawler discovered resources in
a rather hidden portion of site B that manual browsing did not uncover. On site
D, in turn, manual browsing discovered a resource inclusion that the crawler was
not able to find, which was due to exercising JavaScript code when submitting



16 Michael Weissbacher, Tobias Lauinger, William Robertson

Table 7: Overlap between the sets of policy entries generated by the crawler,
through manual browsing and from user-submitted reports. (In brackets, the
number of common/different policy entries when disregarding alternative domain
names or HTTP(S).) No method was fully reliable.

Site A B C D

crawler only 0 (0) 8 (8) 0 (0) 0 (0)
both 3 (3) 12 (9) 12 (10) 8 (7)
manual only 0 (0) 2 (0) 1 (0) 9 (2)

crawler only 0 (0) 9 (9) 0 (0) 0 (0)
both 3 (3) 11 (8) 12 (10) 8 (7)
valid user reports only 0 (0) 3 (1) 26 (3) 14 (2)

manual only 0 (0) 3 (2) 0 (0) 2 (0)
both 3 (3) 11 (7) 13 (10) 15 (9)
valid user reports only 0 (0) 3 (2) 25 (3) 7 (0)

content to the site. The policy entries generated from valid user-submitted re-
ports were always a strict superset of those derived from crawling and browsing
(as shown in the lower two-thirds of the table), except for site B where we found
that a technical mistake had prevented CSP headers from being sent to users in
a small portion of the site. We conclude that the crawler and manual browsing
techniques need more refinement before they can fully replace user-submitted
reports. Since both techniques are complementary, combining them could prove
useful to increase coverage.

Crawling and manual browsing of CSP-enabled sites. In order to com-
pare our crawler-generated policies to real-world policies, we generated policies
for large public websites that deployed CSP in enforcement mode. As a case
study, we provide more detail for Facebook and GitHub.

Our crawl included the public portion of Facebook as well as authenticated
sessions. The policy generated by the crawler was a subset of Facebook’s ac-
tual policy. It listed the specific subdomains of Content Distribution Networks
(CDNs) observed during the crawl, whereas Facebook whitelisted all CDN sub-
domains with a wildcard. Furthermore, while Facebook’s policy restricted only
script-src and connect-src, the crawler also generated entries for img-src,
for instance. Both issues could cause unobserved (but legitimate) behavior to be
blocked and illustrate that automatically generated policies are likely to require
fine-tuning using domain knowledge before they can be deployed.

On GitHub, the crawler discovered all whitelisted resources of the origi-
nal policy (which did not use any wildcards, and restricted only script-src,
style-src, and object-src). The crawler generated additional entries that were
not part of GitHub’s policy. Upon manual verification, we found that some re-
sources included in GitHub’s blog were not loaded due to missing policy entries.
This finding illustrates the importance of monitoring enforced policies when web-
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sites evolve; regular crawls of a website could be a useful tool to help detect such
changes.

Influence of design choices on CSP. Architectural features of a site can
influence whether it is possible to deploy a meaningful policy without changing
the site. Our crawls of Twitter, for instance, found a small, stable set of policy
entries, while additional manual browsing discovered only one additional policy
entry. Most of the resources were internal. Multimedia content included in tweets,
for instance, was loaded from internal subdomains with constant names. Such an
architecture makes it relatively convenient to deploy CSP without major changes.
Indeed, Twitter used CSP in some subdirectories and subdomains.

Other sites such as Amazon, Google, and YouTube dynamically used ex-
plicitly named subdomains of CDNs such as mt{2,3}.google.com, similarly to
Facebook. These subdomains appeared to be used for load balancing and could
therefore be considered equivalent from a security point of view. Our crawler was
not able to enumerate all these subdomains, but post-processing of the policy
such as using a wildcard *.google.com could address the issue. A drawback of
this approach is that sites such as Amazon that use external CDNs would also
be whitelisting other customers’ subdomains. A cleaner approach would be to
use static domain names at the web application layer and address load balancing
transparently at lower layers, as appears to be done by Twitter.

In the examples above, it was possible to compensate for some degree of
variability in the sites by broadening the generated policy because the variability
was systematic. On certain types of sites such as blogs where users are allowed to
include externally hosted content, this may not be possible. The policy used by
GitHub shows a possible compromise in such situations: the site allowed images
to be loaded from any source and restricted only more sensitive resource types
such as scripts and plugins.

Stability of policies. A requirement to successfully deploy an enforceable
policy is to predict at policy generation time the external resources that will
be included when a page is rendered in a browser. A particularly unpredictable
type of external content is advertising. The exact advertisement shown to a
user is typically determined dynamically while the page is loading. Dynamic
advertising can involve techniques such as Real-Time Bidding (RTB), where the
opportunity to display an advertisement to a visitor is auctioned off in real-time,
and further dynamic activity such as cookie matching between the host website
and the winner of the auction. There are routinely tens to hundreds of potential
bidders in RTB [16], each of whom represent a large number of actual advertisers.

In order to better understand how this dynamic activity can be reconciled
with the more static requirements of CSP, we performed repeated crawls of two
large websites with dynamic advertisements and counted how many new policy
entries we discovered in each subsequent crawl (Table 8). Twitter, which we
crawled as a control data point, remained stable and resulted in exactly the
same policy in all crawls. On the BBC, the crawler discovered between 13 and
61 new policy entries in each of the follow-up crawls; the vast majority of them
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Table 8: Additional policy entries discovered in repeated crawls. The high vari-
ability due to advertising on the BBC precludes CSP from being used effectively.
CNN’s way of including advertisement results in a relatively stable (and enforce-
able) policy.

Crawl number 1 2 3 4 5

BBC 285 +34 +61 +13 +53
CNN 116 +4 +2 + 1 +1
Twitter 20 +0 +0

were scripts or other content related to advertising. On CNN, the follow-up
crawls discovered only between one and four new policy entries, and only one
was unambiguously related to advertising. Since both sites displayed comparable
types and amounts of advertisements, the differences must be due to the way
advertising was implemented. Indeed, the BBC loaded all advertisement-related
resources, including RTB scripts, tracking code, and the final image being dis-
played, directly into the body of the main document. It would be very challenging
to deploy CSP in such a scenario because it seems unfeasible to proactively de-
termine any resource that could potentially be loaded. In contrast, CNN isolated
advertisements from the main document by loading them as a separate document
displayed inside an embedded frame.

This decoupling significantly eases the deployment of CSP because the main
document’s policy does not transitively apply to the document inside the frame.
In such a deployment, it would be possible to enforce a rather strict policy
for the main document and a much more permissive policy for the embedded
advertisement document (or none at all). The SOP as well as the HTML5 frame
sandboxing mechanism can be used to ensure that untrustworthy scripts in the
frame cannot access or modify the main document.

Safety of policies. To assess whether policies generated for a site represent
any significant reduction in exposure to attacks, we checked whether the policies
included “unsafe” CSP features—that is, inline script or style and calls to eval.
Among our own sites that included JavaScript, only site B did not require eval
privileges. Amazon, the BBC, CNN, Facebook, Google, the Huffington Post, and
YouTube required all three privileges; Twitter needed inline script and style, and
GitHub only inline style. These requirements may be due to code on the sites
or in external libraries they include. Even though allowing inline script and
eval reduces the effectiveness of CSP against XSS attacks, by restricting where
external resources may be loaded from, CSP could still make it more difficult for
attackers to include custom content such as images or to exfiltrate stolen data.

5.3 Conclusions

Neither näıve crawling nor manual browsing alone are sufficient methods to gen-
erate a content security policy for a website. In our approach, a certain amount
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of fine-tuning of generated policies is required for all but the simplest sites. Ad-
vanced crawling, or applying machine learning to the generated policies, could
reduce the importance of manual tweaks. More complex sites may be able to use
only a subset of CSP unless they adjust their architecture. Once a policy has
been deployed, an additional challenge is to ensure that it is always up to date.

6 Discussion

We saw that only few websites use CSP, and those that do use it do not leverage
its full benefits. For this section, we reached out to security engineers behind
larger CSP deployments and summarize key points. Furthermore, we suggest
several ways in which CSP adoption could be improved.

6.1 Discussions with Security Engineers

To understand implementation decisions behind real-world CSP deployments,
we talked to security engineers responsible for three of the measured websites.
Out of these sites, two were in the Alexa Top 200, and one in the Top 5,000. The
websites used CSP in enforcement mode or report-only for testing. We summarize
the key observations in an anonymized fashion.

Websites prefer not to remove inline script. While inline script can
be completely removed from websites, this represents significant effort and can
lead to more roundtrips when loading the page. Engineers hope to address this
issue with the nonce and hash features of CSP draft version 1.1. Hash might be
more promising because documents can be distributed over CDNs more easily,
whereas for nonce a new document would need to be generated for each response.

Risk of breaking functionality. This was manifested by disabling CSP for
browser versions with problematic CSP implementations, including Chrome and
Firefox. A website that is secure but not usable can harm business more than
occasional XSS. For the future, reliable implementations of CSP in browsers are
anticipated.

Enforcement over extensions is considered a bug. CSP rule enforce-
ment can break the functionality of browser extensions. A workaround is to
whitelist popular sources. However, extensions could still be unintentionally re-
stricted. A modification of browser implementations or the standard to not en-
force rules over extensions could solve this.

6.2 Suggested Improvements

We briefly summarize approaches that could help the adoption of CSP and in-
crease its security benefits when deployed.

Ads should be integrated into iframes instead of the main site.
Instead of whitelisting all possible ad networks or developing a mechanism for
recursive policy adoption, ads should be moved into sandboxed iframes. This
allows the main site to be protected with an effective policy, while the iframe can
be more permissive, but isolated. Conflating both the site proper and ads in the
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same context is not necessary, since information required by ads can be passed via
postMessage cross-window communication. However, while not widely available,
alternatives such as Security Style Sheets [14] have been proposed that would
allow for such separation without moving content to iframes.

More web applications and frameworks should adopt CSP. Introduc-
ing CSP to programs that are deployed widely can have a higher impact on the
overall security of the web as compared to individual websites adopting CSP. As
examples, phpMyAdmin and OwnCloud have adopted CSP, and Django can be
configured with CSP. Most desirable would be the introduction of CSP to web
frameworks, which could drastically improve adoption of CSP and the safety of
the web.

Browsers should not enforce CSP on extensions. As discussed in Sec-
tion 4, enforcing policies on browser extensions generates many unexpected re-
ports for websites. Websites should not be forced to whitelist extensions since
the number of extensions and third-party resources included by those extensions
is theoretically unbounded and cannot be predicted by application developers.
Furthermore, CSP in its current form is not an adequate mechanism for websites
to block potentially undesired extensions and should not be used as such.

7 Related Work

CSP was proposed by Stamm et al. [19], who provided the first implementa-
tion in the Firefox browser. Subsequently, CSP became a W3C standard [6] and
was adopted by most major browsers. Other publications have addressed limi-
tations of CSP and suggested extensions or modifications to the standard. For
instance, Soel et al. [18] proposed an extension of CSP to address shortcomings
in postMessage origin handling.

CSP was the first widely deployed browser policy framework to mitigate con-
tent injection attacks. However, it was not the first one to be suggested. SOMA
(Same Origin Mutual Approval) [15] reduces the impact of XSS and CSRF by con-
trolling information flows. Website operators need to approve content sources in
a manifest file, as well as content providers need to approve websites to include
their content. BEEP [11] can prevent XSS attacks with a whitelist approach
for JavaScript and a DOM sandbox for possibly malicious user content. Script
tags are whitelisted by hash, a feature that is also proposed in the 1.1 draft
of CSP. BLUEPRINT [20] enforces restrictions on the document parse tree
in the browser. Web application server components make parsing decisions and
transport the DOM structure to the client. By enforcing a consistent document
structure, misuse of browser rendering quirks is eliminated. CONSCRIPT [12]
supports a variety of policies for JavaScript enforcement, which can be generated
automatically. Static policy generation is supported for Script#, a Microsoft tool
that generates JavaScript from C# code, as well as a dynamic training mode for
other platforms. Weinberger et al. [21] performed an evaluation of browser-side
policy enforcement systems. They concluded that security policies for HTML
should be a central mechanism for preventing content injection attacks, but
need more research to become effective. We performed the first study on CSP
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adoption in the wild, analyzing how usage has evolved in the past year on the
most popular websites. Also, we investigate how report-only mode can be used
to devise policies, and whether those are effective.

Currently, inline scripts are as popular with websites as they are bad for the
effectiveness of CSP to prevent XSS. Bugzilla and HotCRP required substantial
changes to support CSP [21], while addons.mozilla.org required an effort of
several hours [19]. Previous work performed automatic rewriting of .NET ap-
plications to better support CSP [10]. Recent changes to the CSP draft, such
as nonce and hash whitelisting of scripts, represent an approach that relieves
developers of removing inline scripts while allowing for control over code. Trust
relationships in external script sources have been analyzed by Nikiforakis et
al. [13]. 88% of the Alexa Top 10K most visited websites included scripts from
remote sources, and the most popular single library was included from 68% of
the sites. An outlook on the possible future of web vulnerabilities has been sum-
marized by Zalewski [8]. While CSP addresses a wide range of vulnerabilities,
it can not prevent out-of-order execution of scripts, code reuse through JSONP
interfaces, and others.

8 Conclusion

In this paper, we have presented the results of a long-term study on CSP as it is
deployed on the web. We have found that CSP adoption significantly lags other
web security mechanisms, and that even when it has been adopted by a site, it
is often deployed in a way that negates its theoretical benefits for preventing
content injection and data exfiltration attacks.

In addition, by enabling CSP at four sites, we observed that it is difficult for
third parties to deploy CSP, either through incremental deployment using report-
only mode or through web application crawling to semi-automatically generate
policies.

CSP clearly holds great promise as a web security standard, but we can only
conclude that it is difficult for most sites to deploy it to its full potential in its
current form. It is our hope that the improvements we suggest here, as well as up-
coming features of the 1.1 draft, will allow site operators and developers to make
effective use of content security policies and result in a safer web ecosystem.
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